国内の廃棄窒素排出と 削減ポテンシャル評価に向けて

difference between total and feed eveters waste. Rusiness as usual (RALI) projections for nitrogen waste from the agri feed eveters (2017 enward) are base

反応性窒素過剰によって起こる環境問題

European Nitrogen Assessmentより

やせた土地への窒素 施肥による食料生産 向上	SDG 2 飢餓	窒素肥料は十分な食 料生産に不可欠	SDG 3 保健	環境汚染の 防止,たん 適正な摂取
環境教育と食育は窒 素管理に有効	SDG 5 ジェンダー	家事・職業機会の公 平・平等性と食環境 の向上	SDG 6 水・衛生	窒素利用が 水質汚染の
窒素利用効率向上に よる省エネ,エネル ギー源となる窒素	SDG 8 成長・雇用	食料安全保障は経済 成長の基本	SDG 9 イノヘーション	窒素利用効 新技術,新 となる窒素
窒素の便益を受ける 者と脅威を被る者の 不平等の解消	SDG 11 都市	反応性窒素による大 気・水質汚染の防止	SDG 12 生産・消費	廃棄食品・ の削減, 窒 クルの向上
窒素利用に伴う温室 効果ガス排出の削減	SDG 14 海洋資源	海洋生態系の富栄養 化・貧栄養化,生物 多様性損失の改善	SDG 15 陸上資源	陸域生態系 化・貧栄養 多様性損失
火薬・爆薬原料とな る窒素の平和利用の 促進	SDG 17 実施手段	窒素管理に向けた研 究分野間・ステーク ホルダー間の連携		

図説 窒素と環境の科学より

統合的窒素管理の必要性

反応性窒素種間の トレードオフを生じ させない管理手法 複数の反応性窒素種

または複数媒体中の 窒素削減に貢献する 管理手法

図説 窒素と環境の科学より

本日のトピック

- 日本の廃棄窒素排出の現状について
- 大気 → 陸 → 水圏における窒素フロー
- 廃棄窒素削減にむけた今後の課題について

Nに関わる大気/公共用水域等の環境基準達成率

日本の包括的窒素排出インベントリ

CHANSモデル (インベントリのベース)

➡ ➡ Indicating denitrification potential

Gu et al. (2013 in EST)

日本の包括的窒素排出インベントリ 反応性窒素種別排出

Coastal zone Direct loss Terrestrial water Discharge Runoff & leaching Atmosphere NH_3 N_2O NO_x others NO_x transportation NO_x energy conversion

Hayashi et al. (2021) in EP

大気への窒素排出の推移

Hayashi et al. 2021の数値より

水圏への窒素排出の推移

From_pool Atmosphere Cropland Fisheries Forest Grassland Human_settlements Solid_waste Urban green Wastewater

Hayashi et al. 2021の数値より

環境総合推進費:5-2301 (FY2023-2025) 廃棄窒素削減に向けた統合的窒素管理に関する研究

研究代表者所属機関名:国立環境研究所 研究代表者氏名:仁科一哉

林健太郎(地球研/農研機構)インベントリ 松八重一代 + PD(東北大)インベントリ(産業) 種田あずさ(農研機構)貿易 朝田景(農研機構)インベントリ(農業) 小野寺崇(国環研)

仁科一哉(国環研)陸域生態系モデル 早川敦(秋田県立大)流域評価 茶谷聡(国環研)大気輸送モデル(沈着、大気濃度) 朝田景(農研機構)作物窒素収支モデル 林岳彦(国環研)ロジックモデル整理 花岡達也(国環研)統合評価モデル 岡寺智大(国環研)国際統計解析 上屋一彬(国環研)統合評価モデル(土地利用モデル)

連携

畠中エルザ

(国環研) インベントリ 伊藤昭彦(国環研) 陸域生態系モデル

本プロジェクトの構成

①日本国窒素インベントリ開発 および廃棄窒素削減目標設定の研究

②国内の窒素政策および統合的窒素 管理の効果測定に関する研究

日本国窒素インベントリ開発 Sub 1

反応性窒素環境中動態に関する研究

日本国窒素インベントリ作成(~2020/later)

- 包括的窒素管理ロジックモデルの作成
- ・既往政策の排出削減への貢献の定量化
- ・廃棄窒素半減達成への排出削減パスの提案
- ・対策の効果測定(全球・アジア・日本・流域/圃場)

反応性窒素排出インベントリの再検討

農地土壌からのNH3揮散

期間のアップデート,国際ルールとの整合性(項目),排出係数の見直し

廃棄窒素に関連する近年の施策例

トみどりの食料システム戦略

> バイオマス活用推進基本法

下水汚泥の肥料利用 10% ->?

> 食品ロス半減推進法

気候変動対策 (e.g. BEVの普及)

▶ NH3燃焼利用

2050(2030)年までに化学肥料/農薬 30(20)%減

2030年までに50%減、同時にリサイクル率を上げる

脱炭素政策の一環。2030年には年間2.6Tg-Nの利用

茶谷推進費5-2105資料

サブテーマ1

国内の主要発生源である固定燃焼発生源と非燃焼VOC 発生源について、2000~2019年の排出量の変化要因を 活動量と排出係数に分離して定量化

対応する排出ガス規制の影響を定量化

自動車についてはさらに車齢に分解して排出量を推計し

対策技術考慮 時変排 出 係 数 \mathcal{T} 利 用

近年の大気への反応性窒素排出と大気沈着

茶谷推進費5-2105 新規開発排出インベントリ+CMAQによる計算

水域への窒素負荷:全国,琵琶湖,霞ヶ浦

日本: Hayashi et al. 2021, 琵琶湖, 霞ヶ浦: 湖沼水質保全計画より (図説 窒素と環境の科学を改変)

船舶でNH₃燃焼を想定した計算 by 茶谷さん NH₃ emission = NOx emission in EDGAR

NH_y deposition

Incremental NH_y deposition

まとめにかえて

- ・日本の廃棄窒素排出が減少傾向にある
- 地域(流域)ごとに最適な管理は異なる

本課題は環境総合推進費"5-2301JpNwst", "5-2105" ならびに地球研プロジェクトSus-Nの元で行われた

大気 → 陸 → 水圏における窒素フローの考慮は重要